

Supporting Information

Cross-conjugated Chromophores: Synthesis of *iso*-Polydiacetylenes with Donor/Acceptor Substitution

Catalin Ciulei and Rik R. Tykwinski*

Department of Chemistry, University of Alberta,
Edmonton, Alberta, T6G 2G2 Canada
E-mail: rik.tykwinski@ualberta.ca

1. Experimental and spectroscopic details for compounds **2-4** and **6-13**.
2. ^1H and ^{13}C NMR spectra for molecules **4**, **9** and **13**

Experimental

General. Reagents were purchased reagent grade from commercial suppliers and used without further purification. THF was distilled from sodium/benzophenone ketyl. 4-Iodo-*N,N*-dimethylaniline,¹ compound **1**,² and compound **5**³ were made as previously reported. Anh. MgSO₄ was used as the drying agent after aqueous work-up. Evaporation and concentration *in vacuo* was done at H₂O-aspirator pressure. All reactions were performed in standard, dry glassware under an inert atmosphere of N₂. A positive pressure of N₂ was essential to the success of all Pd-catalyzed reactions. Degassing of solvents was accomplished by vigorously bubbling N₂ through the solution for at least 45 min. Column chromatography: *silica gel-60* (230-400 mesh) from *General Intermediates of Canada*. Thin Layer Chromatography (TLC): aluminum sheets covered with *silica gel-60 F₂₅₄* from *Macherey-Nagel*; visualization by UV light or KMnO₄ stain. M.p.: *Gallenkamp* apparatus; uncorrected. DSC: *Dupont 900 Differential Thermal Analyzer*. UV/VIS Spectra: *Varian Cary 400* at rt; λ_{max} in nm (ϵ in L M⁻¹ cm⁻¹). IR spectra (cm⁻¹): *Nicolet Magna-IR 750* (neat) or *Nic-Plan IR Microscope* (solids). ¹H- and ¹³C-NMR: *Varian Gemini-300* and *Bruker AM-300* or *400* instruments, at rt in CDCl₃; solvent peaks (7.24 ppm for ¹H and 77.0 ppm for ¹³C) as reference. EI MS (*m/z*): *Kratos MS50* instrument. Elemental analyses were effected by Spectral Services at the University of Alberta.

For simplicity, the coupling constants of the aryl protons for the *p*-*N,N*-dimethylaminophenyl and *p*-nitrophenyl moieties have been reported as pseudo first-order, even though they are second-order spin systems.

Donor-substituted Monomer 2. A mixture of **1** (325 mg, 0.979 mmol) and K₂CO₃ (50 mg, 0.36 mmol) in wet THF (5 mL) and MeOH (25 mL) was stirred for 4 h. Et₂O and H₂O were added, the organic phase separated, washed with saturated aq. NH₄Cl, saturated aq. NaCl, dried (MgSO₄) and reduced to 5 mL. Et₃N (50 mL) was added, and the solution was degassed for 2 h. *p*-Iododimethylaniline (250 mg, 1.01 mmol), PdCl₂(PPh₃)₂ (59 mg, 0.08 mmol) and CuI (31 mg, 0.16 mmol) were sequentially added. The mixture was stirred at rt for 20 h. Solvent removal and purification by column chromatography (*silica gel-H*, hexane/CH₂Cl₂ 3:1) afforded **2** (229 mg, 63%) as a pale yellow solid. Mp 45-46 °C; UV/VIS (CHCl₃) 268 (16500), 302 (sh, 15000) 325 (22100) nm; IR (neat) 2942, 2865, 2202, 2150, 1607, 1520, 1365, 809 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, *J* = 9.0 Hz, 2H), 6.61 (d, *J* = 9.0 Hz, 2H), 2.95 (s, 6H), 2.063 (s, 3H), 2.059 (s, 3H), 1.09 (s, 21H); ¹³C NMR (75.5 MHz, CDCl₃) δ 152.8, 150.0, 132.5, 111.9, 110.7, 104.2, 102.5, 92.3, 92.0, 84.5, 40.3, 22.8, 22.7, 18.8, 11.4; EIMS *m/z* 379 (M⁺, 100); HRMS calcd. for C₂₅H₃₇NSi 379.2695, found 379.2699. X-Ray.

Acceptor-substituted Monomer 3. A mixture of **1** (256 mg, 0.770 mmol) and K₂CO₃ (58 mg, 0.42 mmol) in wet THF (5 mL) and MeOH (25 mL) was stirred for 4 h. Et₂O and H₂O were added, the organic phase separated, washed with saturated aq. NH₄Cl, saturated aq. NaCl, dried (MgSO₄) and reduced to 5 mL. Et₃N (50 mL) was added, and the solution was degassed for 1.5 h. *p*-Iodonitrobenzene (187 mg, 0.751 mmol), PdCl₂(PPh₃)₂ (21 mg, 0.03 mmol) and CuI (6 mg, 0.03 mmol) were sequentially added. The mixture was stirred at rt for 19 h. Solvent removal and purification by column chromatography (*silica gel*, hexane/CH₂Cl₂ 3:1) afforded **3** (240 mg, 82%) as a bright yellow solid. Mp 70-72 °C; UV/VIS (CHCl₃) 268 (16200), 351 (15600) nm; IR (CH₂Cl₂, cast) 2942, 2865, 2206, 2148, 1592, 1520, 1343, 854 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 2.11 (s, 3H), 2.10 (s, 3H), 1.10 (s, 21H); ¹³C-NMR (75.5 MHz, CDCl₃) δ 157.2, 146.9, 132.0, 130.6, 123.6, 102.8, 101.7, 93.6, 92.1, 89.5, 23.1, 23.0, 18.7, 11.4; EIMS *m/z* 381.2 (M⁺, 27), 338.1573 ([M - *i*-Pr]⁺, 100); HRMS calcd. for C₂₃H₃₁N₂O₂Si

381.2124, found 381.2115. Anal. calcd. for $C_{23}H_{31}N_2O_2Si$: C, 72.39; H, 8.19; N, 3.67. Found: C, 72.20; H, 8.20; N, 3.63.

D-A-substituted Monomer 4. A solution of **2** (70 mg, 0.18 mmol) and Bu_4NF (0.7 mL, 1 M in THF) in wet THF (20 mL) was stirred at rt for 1 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$, dried ($MgSO_4$), reduced to 5 mL and added to Et_3N (20 mL) and THF (20 mL). The solution was degassed for 1.5 h, *p*-iodonitrobenzene (48 mg, 0.19 mmol), $PdCl_2(PPh_3)_2$ (5 mg, 0.007 mmol) and CuI (3 mg, 0.02 mmol) were added, and the mixture was stirred at rt for 12 h. Solvent removal and purification by column chromatography (silica gel-H, hexane/ CH_2Cl_2 1:1) afforded **4** (44 mg, 70%) as an orange solid. Mp 159-162 °C; UV-VIS ($CHCl_3$) 302 (sh, 26300), 325 (34000) nm; IR (CH_2Cl_2 , cast) 2903, 2198, 1607, 1518, 1341, 854 cm^{-1} ; 1H NMR (300 MHz, $CDCl_3$) δ 8.16 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 7.35 (d, J = 8.9 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 2.97 (s, 6H), 2.143 (s, 3H), 2.137 (s, 3H); ^{13}C NMR (75.5 MHz, $CDCl_3$) δ 154.9, 150.2, 146.8, 132.6, 132.1, 130.7, 123.6, 111.9, 110.0, 101.5, 93.1, 92.6, 89.2, 83.6, 40.3, 23.03, 23.01; EIMS m/z 344 (M^+ , 100); HRMS calcd. for $C_{22}H_{20}N_2O_2$ 344.1525, found 344.1522.

Dimer 6. A mixture of **1** (151 mg, 0.455 mmol) and K_2CO_3 (30 mg, 0.22 mmol) in wet THF (5 mL) and MeOH (15 mL) was stirred for 2 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$, dried ($MgSO_4$), reduced to *ca.* 5 mL, and added to a degassed solution of **5** (109 mg, 0.365 mmol) in DMF (10 mL). $Pd(PPh_3)_4$ (21 mg, 0.02 mmol) and Et_2NH (3 mL) were sequentially added, the solution stirred for 5 min, CuI (10 mg, 0.05 mmol) was added and the solution stirred at rt for 2 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$ and dried ($MgSO_4$). Purification by column chromatography (silica gel, hexane/ CH_2Cl_2 1:1) afforded **6** (118 mg, 63%) as a yellow oil. IR (CH_2Cl_2 , cast) 2942, 2149, 1463, 842 cm^{-1} ; 1H NMR (300 MHz, $CDCl_3$) δ 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H), 1.07 (s, 21H), 0.17 (s, 9H); ^{13}C NMR (50.5 MHz, $CDCl_3$) δ 154.4, 153.7, 103.6, 102.1, 101.8 (2C), 95.7, 92.2, 88.7, 88.2, 22.7 (2C), 22.5 (2C), 18.6, 11.3, -0.05; EIMS m/z 410 (M^+ , 100); HRMS calcd. for $C_{26}H_{42}Si_2$ 410.2825, found 410.2823. Anal. calcd. for $C_{26}H_{42}Si_2$: C, 76.02; H, 10.31. Found: C, 76.12; H, 10.58.

Donor-substituted Dimer 7. To a solution of **6** (152 mg, 0.370 mmol) in wet THF (3 mL) and MeOH (15 mL) was added K_2CO_3 (27 mg, 0.19 mmol) and the mixture stirred for 5 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$, dried ($MgSO_4$), reduced to *ca.* 5 mL, and added to a degassed solution of *p*-iodo-*N,N*-dimethylaniline (106 mg, 0.482 mmol) in Et_3N (40 mL). $PdCl_2(PPh_3)_2$ (27 mg, 0.04 mmol) and CuI (14 mg, 0.07 mmol) were added, and the mixture was stirred at rt for 14 h. Solvent removal and purification by column chromatography (silica gel, hexane/ CH_2Cl_2 5:2) afforded **7** (96 mg, 56%) as a pale yellow solid. Mp 68-69 °C; UV/VIS ($CHCl_3$) 263 (23800), 295 (sh, 34800), 303 (35700), 325 (sh, 26100); IR (neat) 2942, 2864, 2201, 2142, 1881, 1612, 1523, 1462, 1224, 882, 815 cm^{-1} ; 1H NMR (300 MHz, $CDCl_3$) δ 7.30 (d, J = 9.0 Hz, 2H), 6.61 (d, J = 9.0 Hz, 2H), 2.95 (s, 6H), 2.08 (s, 3H), 2.05 (s, 3H), 2.04 (s, 6H), 1.08 (s, 21H); ^{13}C NMR (75.5 MHz, $CDCl_3$) δ 153.6, 151.5, 150.0, 132.5, 111.9, 110.7, 103.9, 102.3, 102.0, 92.1, 92.0, 89.0, 88.2, 84.4, 40.3, 22.8, 22.7 (2C), 22.6, 18.7, 11.4; EIMS m/z 457 (M^+ , 100); HRMS calcd. for $C_{31}H_{43}NSi$ 457.3165, found 457.3164. Anal. calcd. for $C_{31}H_{43}NSi$: C, 81.34; H, 9.47; N, 3.06. Found: C, 80.95; H, 9.59; N, 3.03.

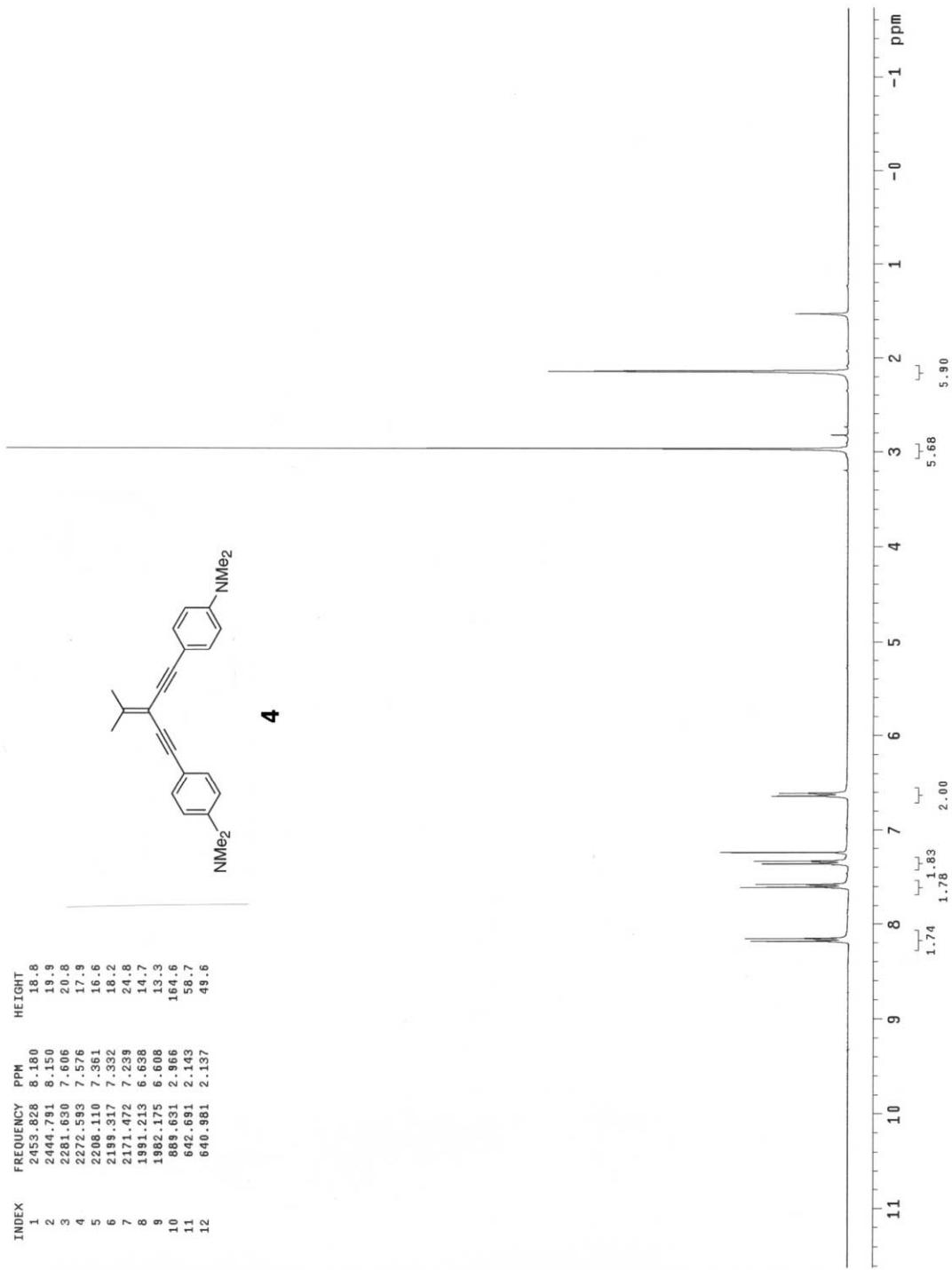
Acceptor-Substituted Dimer 8. A mixture of **6** (113 mg, 0.276 mmol) and K_2CO_3 (17 mg, 0.12 mmol) in wet THF (1.5 mL) and MeOH (7.5 mL) was stirred at rt for 5 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$, dried

($MgSO_4$), and reduced to 5 mL. The solution was diluted with Et_3N (50 mL) and degassed for 1.5 h. *p*-Iodonitrobenzene (60 mg, 0.24 mmol), $PdCl_2(PPh_3)_2$ (16 mg, 0.02 mmol), and CuI (7 mg, 0.04 mmol) were added and the mixture was stirred at rt for 14 h. Solvent removal and purification by column chromatography (silica gel, hexane/ CH_2Cl_2 3:2) afforded **8** (117 mg, 92%) as a bright yellow solid. Mp 58-60 °C; UV-VIS ($CHCl_3$) 264 (20000), 293 (24600), 303 (sh, 23100), 358 (12500) nm; IR (CH_2Cl_2 , cast) 2942, 2209, 2146, 1592, 1520, 1342 cm^{-1} ; 1H NMR (300 MHz, $CDCl_3$) δ 8.16 (d, J = 9.0 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H), 2.12 (3H), 2.09 (3H), 2.06 (3H), 2.04 (3H), 1.07 (21H); ^{13}C NMR (75.5 MHz, $CDCl_3$) δ 155.8, 154.3, 146.9, 132.0, 130.6, 123.6, 103.5, 102.0, 101.3, 92.5, 92.1, 89.3, 89.2, 87.7, 23.0, 22.9, 22.8, 22.7, 18.7, 11.4; EIMS m/z 459 (M^+ , 52), 416 ([$M - i-Pr$] $^+$, 100); HRMS calcd. for $C_{29}H_{37}NO_2Si$ 459.2594, found 459.2591. Anal. calcd. for $C_{29}H_{37}NO_2Si$: C, 75.77; H, 8.11; N, 3.05. Found: C, 75.46; H, 8.21; N, 2.97.

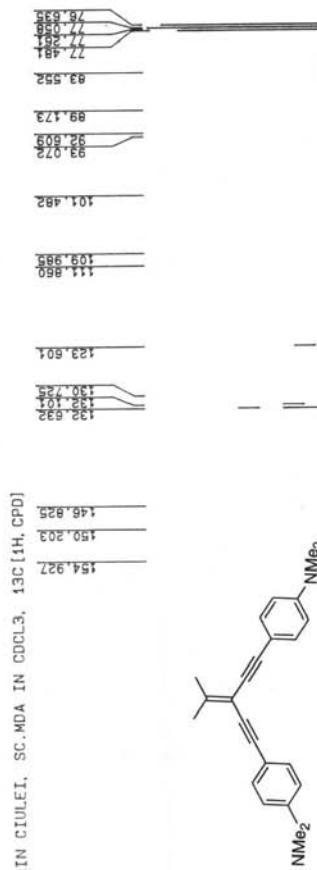
Donor-Acceptor-Substituted Dimer 9. A solution of **7** (66 mg, 0.15 mmol) and Bu_4NF (0.3 mL, 1.0 M in THF) in wet THF (25 mL) was stirred at rt for 15 min. Et_2O and H_2O were added, the organic phase was separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$, dried ($MgSO_4$), reduced to 5 mL and added to a mixture of Et_3N (20 mL) and THF (20 mL). The solution was degassed for 1.5 h, *p*-iodonitrobenzene (37 mg, 0.15 mmol), $PdCl_2(PPh_3)_2$ (5 mg, 0.007 mmol) and CuI (4 mg, 0.02 mmol) were added, and the mixture was stirred at rt for 6 h. Solvent removal and purification by column chromatography (silica gel, hexane/ CH_2Cl_2 1:1) afforded **9** (33 mg, 76%) as an orange solid. Mp 154-156 °C; UV-VIS ($CHCl_3$) 291 (43500), 325 (sh, 31300) nm; IR ($CHCl_3$, cast) 2924, 2202, 1608, 1519, 1342 cm^{-1} ; 1H NMR (300 MHz, $CDCl_3$) δ 8.16 (d, J = 9.0 Hz, 2H), 7.57 (d, J = 9.0 Hz, 2H), 7.32 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 8.9 Hz, 2H), 2.95 (s, 6 H), 2.12 (s, 6H), 2.10 (s, 3H), 2.08 (s, 3H); ^{13}C NMR (75.5 MHz, C_6D_6) δ 155.4, 151.9, 150.3, 147.1, 133.0, 132.0, 130.0, 123.4, 112.2, 111.0, 103.0, 102.3, 93.6, 92.2, 90.5, 90.0, 87.9, 85.1, 39.6, 22.8, 22.7 (3C); EIMS m/z 422 (M^+ , 100); HRMS calcd. for $C_{28}H_{26}N_2O_2$ 422.1994, found 422.1987.

Trimer 10. A mixture of **6** (274 mg, 0.668 mmol) and K_2CO_3 (28 mg, 0.20 mmol) in wet THF (10 mL) and MeOH (10 mL) was stirred for 3 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$, dried ($MgSO_4$), reduced to *ca.* 5 mL, added to a degassed solution of **5** (193 mg, 0.643 mmol) in DMF (30 mL), and degassed for 0.5 h. $Pd(PPh_3)_4$ (37 mg, 0.03 d) and Et_2NH (5 mL) were sequentially added, the solution stirred for 5 min, CuI (17 mg, 0.09 mmol) was added, and the solution stirred at rt for 15 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$ and dried ($MgSO_4$). Elution on a silica gel column with hexane afforded **10** (171 mg, 52%) as a yellow solid; Mp 48-50 °C; UV/VIS ($CHCl_3$) 255 (25600), 284 (27600) nm; IR (neat) 2946, 2148, 1602, 840 cm^{-1} ; 1H NMR (300 MHz, $CDCl_3$) δ 2.04 (s, 3H), 2.03 (s, 3H), 2.02 (s, 6H), 2.01 (s, 3H), 1.99 (s, 3H), 1.07 (s, 3H), 1.06 (s, 18H), 0.17 (s, 9H); ^{13}C NMR (50.5 MHz, $CDCl_3$) δ 154.4, 153.8, 152.7, 103.6, 102.1, 101.8, 101.7, 95.7 (2C), 92.1, 88.6, 88.5, 88.3, 87.9, 22.7 (3C), 22.5 (3C), 18.7, 11.3, -0.04; EIMS m/z 488 (M^+ , 100); HRMS calcd. for $C_{32}H_{48}Si_2$ 488.3295, found 488.3292. Anal. calcd. for $C_{32}H_{48}Si_2$: C, 78.62; H, 9.90. Found: C, 78.27, H, 10.09.

Donor-substituted Trimer 11. A mixture of **10** (115 mg, 0.236 mmol) and K_2CO_3 (25 mg, 0.18 mmol) in wet THF (2 mL) and MeOH (10 mL) was stirred for 4.5 h. Et_2O and H_2O were added, the organic phase separated, washed with saturated aq. NH_4Cl , saturated aq. $NaCl$, dried ($MgSO_4$) and reduced to *ca.* 5 mL. Et_3N (15 mL) was added and the solution was degassed for 1.5 h. *p*-Iodo-*N,N*-dimethylaniline (58 mg, 0.23 mmol), $PdCl_2(PPh_3)_2$ (15 mg, 0.02 mmol) and CuI (7 mg, 0.04 mmol) were sequentially added. The mixture was stirred at rt for 16 h. Solvent removal and purification by column chromatography (silica gel, hexane/ CH_2Cl_2 4:1) afforded **11** (96 mg,


76%) as a pale yellow solid. Mp 111-113 °C; UV/VIS (CHCl₃) 294 (38600), 325 (sh, 24800) nm; IR (CHCl₃, cast) 2940, 2196, 2145, 1609, 1520, 1347 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 8.9 Hz, 2H), 6.61 (d, *J* = 8.9 Hz, 2H), 2.95 (s, 6H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 6H), 2.03 (s, 3H), 2.02 (s, 3H), 1.07 (s, 21H); ¹³C NMR (75.5 MHz, CDCl₃) δ 153.8, 152.5, 151.5, 150.0, 132.5, 111.9, 110.7, 103.8, 102.2, 102.0, 101.9, 92.2, 92.0, 88.7, 88.7, 88.3, 88.1, 84.5, 40.3, 22.8 (2C), 22.7, 22.65 (2C), 22.60, 18.7, 11.4; EIMS *m/z* 535 (M⁺, 100); HRMS calcd. for C₃₇H₄₉NSi 535.3634, found 535.3616. Anal. calcd. for C₃₇H₄₉NSi: C, 82.93; H, 9.22; N, 2.61. Found C, 82.44; H, 9.32; N, 2.54.

Acceptor-substituted Trimer 12. A mixture of **10** (14 mg, 0.03 mmol) and K₂CO₃ (3 mg, 0.02 mmol) in wet THF (0.5 mL) and MeOH (1.5 mL) was stirred at rt for 4 h. Et₂O and H₂O were added, the organic phase separated, washed with saturated NH₄Cl, saturated NaCl, dried (MgSO₄) and reduced to 5 mL. The solution was diluted with Et₃N (10 mL) and degassed for 1.5 h. *p*-Iodonitrobenzene (7 mg, 0.03 mmol), PdCl₂(PPh₃)₂ (2 mg, 0.002 mmol), and CuI (0.85 mg, 0.004 mmol) were added and the mixture was stirred at rt, under nitrogen, for 15 h. Solvent removal and purification by column chromatography (silica gel, hexane/CH₂Cl₂ 1:2) afforded **12** (13 mg, 84%) as a bright yellow solid. Mp 77-79 °C; UV-VIS (CHCl₃) 287 (26600), 307 (sh, 22900), 352 (9770) nm; IR (CH₂Cl₂, cast) 2941, 2206, 2145, 1592, 1519, 1342 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.16 (d, *J* = 9.0 Hz, 2H), 7.55 (d, *J* = 9.0 Hz, 2H), 2.12 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 2.05 (s, 6H), 2.02 (s, 3H), 1.06 (s, 21H); ¹³C NMR (100.5 MHz, APT, CDCl₃) δ 155.8, 153.9, 153.2, 146.8, 132.0, 130.6, 123.6, 103.6, 102.1, 101.6, 101.2, 92.3, 92.1, 89.2, 89.1, 88.5, 88.3, 87.3, 23.0, 22.9, 22.8 (2C), 22.6 (2C), 18.6, 11.3; EIMS *m/z* 537 (M⁺, 81), 494 ([M - *i*-Pr]⁺, 100); HRMS calcd. for C₃₅H₄₃O₂NSi 537.3063, found 537.3062. Anal. calcd. for C₃₅H₄₃O₂NSi: C, 78.16; H, 8.06; N, 2.60. Found: C, 77.48; H, 7.91; N, 1.57.


D-A-Substituted Trimer 13. A solution of **11** (22 mg, 0.04 mmol) and Bu₄NF (0.2 mL, 1 M in THF) in wet THF (10 mL) was stirred at rt, for 45 min. Et₂O and H₂O were added, the organic phase was separated, washed with saturated aq. NH₄Cl, saturated aq. NaCl, dried (MgSO₄), reduced to 5 mL and added to Et₃N (10 mL) and THF (10 mL). The solution was degassed for 1.5 h, *p*-iodonitrobenzene (10 mg, 0.04 mmol), PdCl₂(PPh₃)₂ (4 mg, 0.005 mmol) and CuI (1 mg, 0.006 mmol) were added, and the mixture was stirred at rt for 19 h. Solvent removal and purification by column chromatography (silica gel, hexane/CH₂Cl₂ 1:1) afforded **12** (17 mg, 83%) as an orange solid. Mp 144-146 °C; UV/VIS (CHCl₃) 297 (46600), 325 (sh, 35500), 372 (sh, 9560) nm; IR (film) 2906, 2201, 1611, 1521, 1344 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 9.0 Hz, 2H), 7.53 (d, *J* = 9.0 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 6.59 (d, *J* = 8.8 Hz, 2H), 2.95 (s, 6H), 2.12 (s, 3H), 2.11 (s, 3H), 2.08 (s, 6H), 2.07 (s, 3H), 2.06 (s, 3H); ¹³C NMR (75.5, CDCl₃) δ 155.7, 152.9, 151.6, 150.0, 146.9, 132.5, 132.0, 130.7, 123.6, 111.9, 102.6, 101.8, 101.4, 92.23, 92.18, 89.4 (2C), 89.0, 88.0, 87.9, 87.4, 84.4, 40.2, 23.0 (2C), 22.85 (2C), 22.76, 22.73; EIMS *m/z* 500 (M⁺, 100); HRMS calcd. for C₃₄H₃₂O₂N₂ 500.2464, found 500.2458. Anal. calcd. for C₃₄H₃₂O₂N₂: C, 81.36; H, 7.02; N, 5.42. Found: C, 81.39; H, 7.07; N, 5.23.

References:

- 1) Dawson, D. J.; Frazier, J. D.; Brock, P. J.; Twieg, R. J. in *Polymers for High Technology*; ASC Symp. Ser. Vol. 346; ACS: Washington, D.C., 1987, pp 445-456.
- 2) Zhao, Y.; Tykwienski, R. R. *J. Am. Chem. Soc.* **1999**, *121*, 458-459.
- 3) Stang, P. J.; Fisk, T. E. *Synthesis* **1979**, 438-440

SORIN CIULEI, SC.MDA IN CDCl₃, 13C [1H, CPD]

4

AU120F:101
AU PROG:
X02.AU
DATE: 2-9-99
TIME: 1:18

SF 75.469
SY 142.0
O1 6140.488

SI 65536
TD 32768
SW 18518.519
H2/PFT 565

PW 0.0
RD 0.0
AQ .885

RG 800
NS 32000
TE 297

FW 23200
O2 4582.000
DP 18H CPD

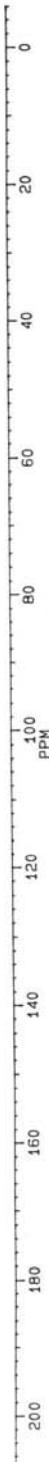
LB 1.200
GB 0.0
CX 39.00

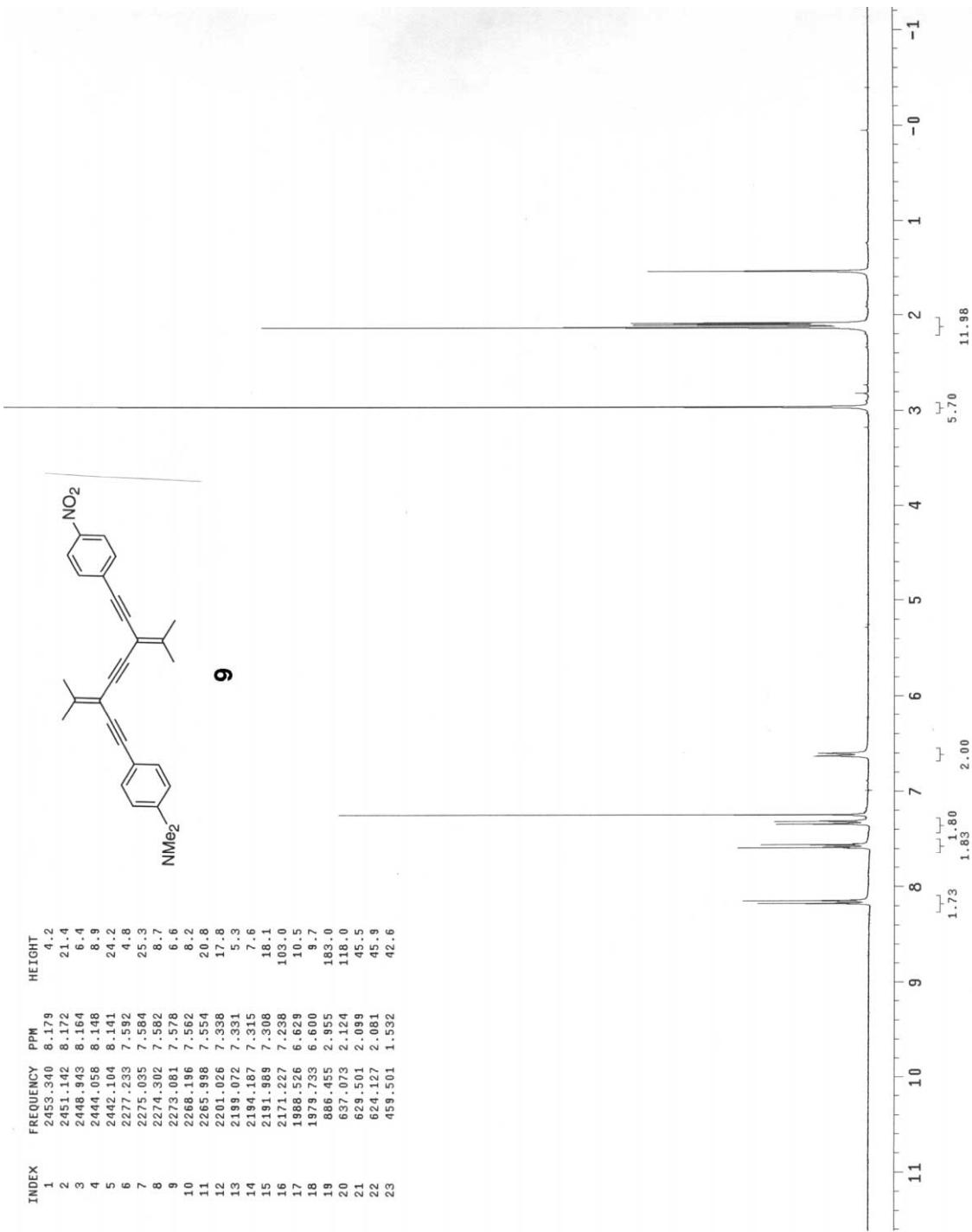
CY 19.00
F1 209.994P

F2 -16.003P
H2/CM 455.803

PPM/CM 6.000
SR -1419.10

D5 -1000000
P9 100.00


S1 18H
PO 1.90


RG,A 0.0
RD 0.0
PW 0.0

DE 33.80
NS 32000
DS 0.2

O1 .1000000

40.267

JL000F.105

AU PROS.

X0-AU

DATE 10-7-99

TIME 11:15

SF 75.469

SY 112.0

01 6140.000

SI 32768

TD 32768

SW 18518.519

HZ/P1 1.130

PW 0.0

RD 0.0

AQ .885

RG 800

NS 28800

TE 297

FW 23200

02 4425.000

DP 18H CPD

LB 1.200

GB 0.0

CX 36.00

CY 0.0

F1 210.013P

F2/CW -5.998P

PPM/CM 452.834

SR -1424.44

D5 1000000

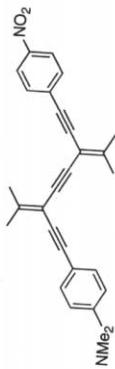
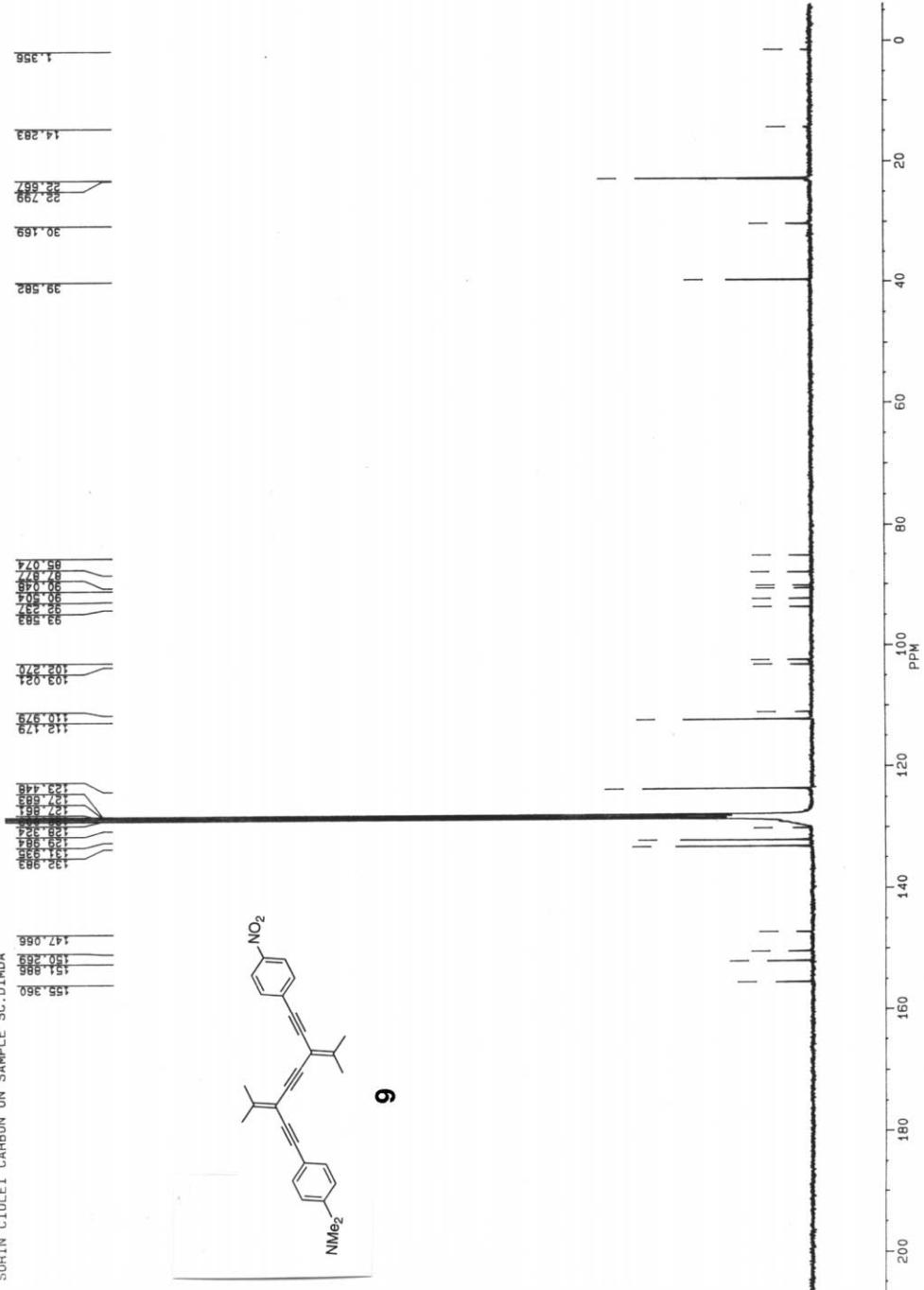
P9 100.00

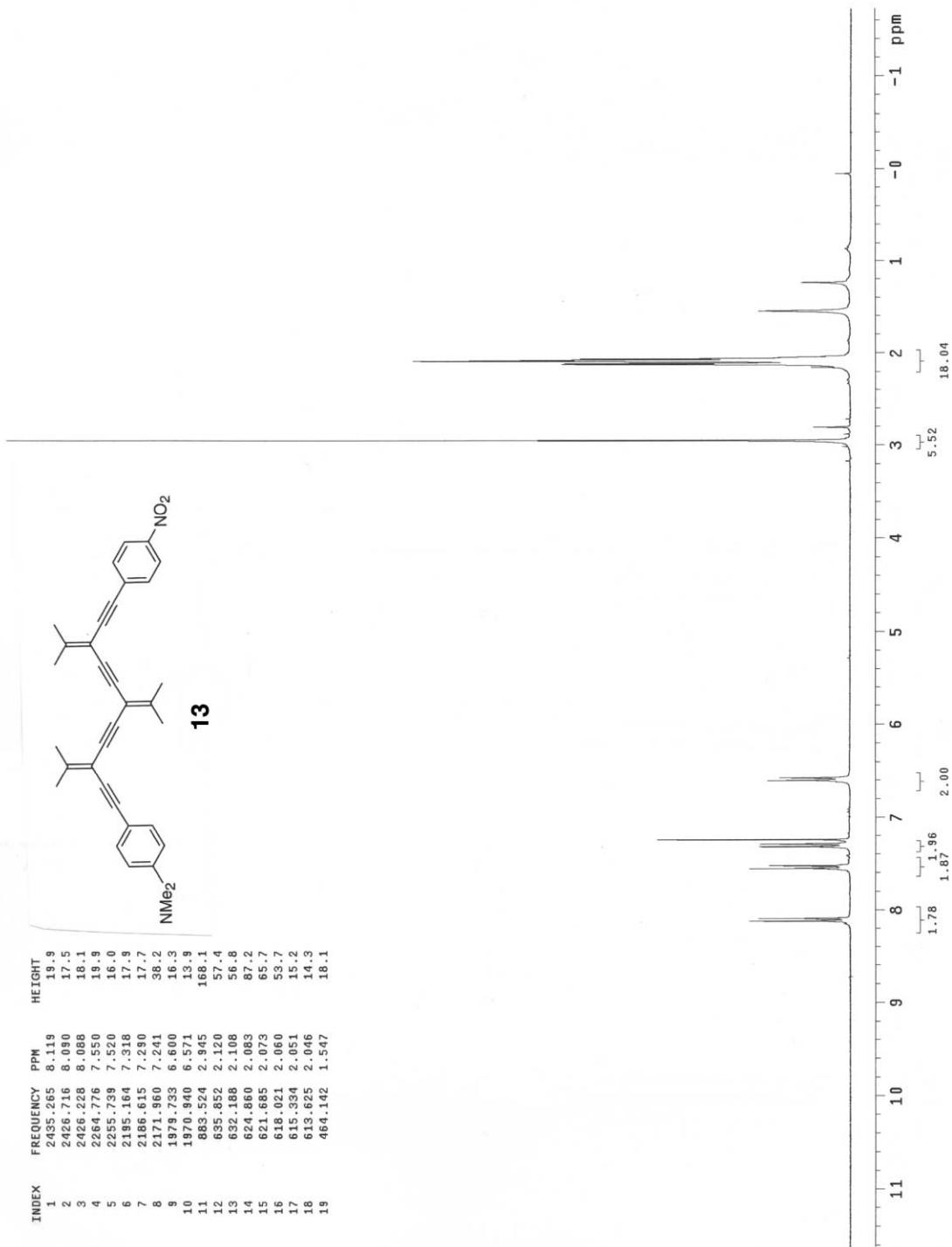
S1 18H

P0 2.00

RG A 0.0

RD 0.0

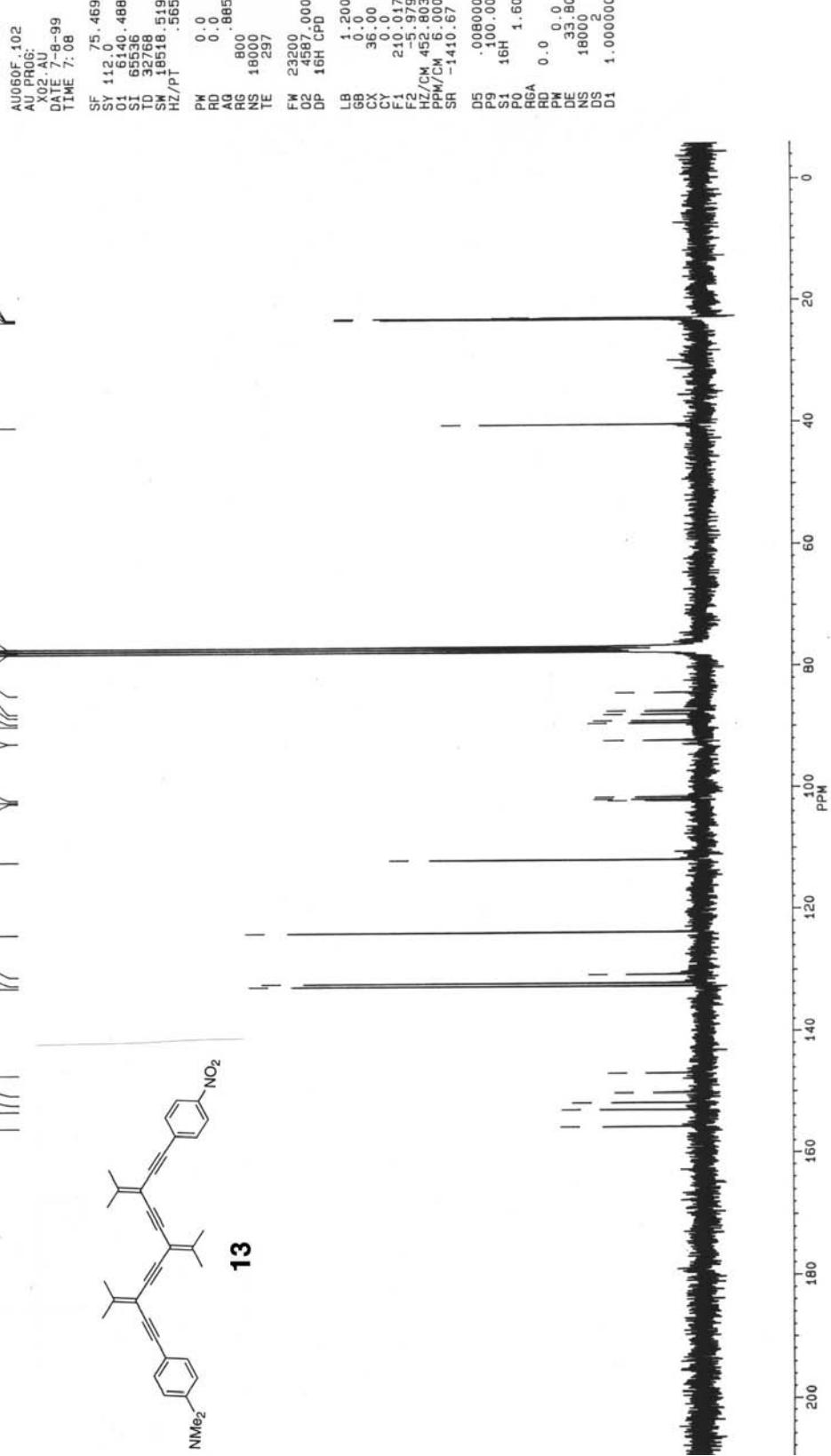


PW 0.0


DE 33.80

NS 28800

DS 1000000

D1 .1000000


JOHN CUEI
SC, TRDA IN CDCl₃, ¹³C[¹H, CPD]

13

40.255

